public abstract class SupervisedLearningSettings extends AbstractLearningSettings
Modifier and Type | Method and Description |
---|---|
abstract SupervisedLearningSettings |
copy()
Make a deep copy of the learning settings.
|
double |
getMarkovBlanketRestrictionFrequencyThreshold() |
long |
getMarkovBlanketRestrictionSeed() |
int |
getMarkovBlanketRestrictionTestCount() |
java.lang.String |
getTargetNodeName()
Return the name of the target node if the learning algorithm is supervised.
|
boolean |
isMarkovBlanketRestrictionBlocked() |
boolean |
isMarkovBlanketRestrictionEnabled() |
boolean |
isMarkovBlanketRestrictionFixedSeed() |
boolean |
isMarkovBlanketRestrictionUsed() |
boolean |
isSupervised()
Indicate if the current learning algorithm is supervised (i.e. it needs a target) or not.
|
boolean |
isValid()
Test if the current settings are valid.
|
void |
setMarkovBlanketRestrictionBlocked(boolean markovBlanketBlocked) |
void |
setMarkovBlanketRestrictionEnabled(boolean markovBlanketEnabled) |
void |
setMarkovBlanketRestrictionFixedSeed(boolean fixedSeed) |
void |
setMarkovBlanketRestrictionFrequencyThreshold(double frequencyThreshold) |
void |
setMarkovBlanketRestrictionSeed(long seed) |
void |
setMarkovBlanketRestrictionTestCount(int testCount) |
void |
setMarkovBlanketRestrictionUsed(boolean markovBlanket) |
void |
setTargetNodeName(java.lang.String target) |
java.lang.String |
toString() |
getSmoothedProbabilityEstimation, getStructuralCoefficient, isVerbose, setSmoothedProbabilityEstimation, setStructuralCoefficient, setVerbose
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
getLearningAlgorithm
public abstract SupervisedLearningSettings copy()
LearningSettings
public boolean isMarkovBlanketRestrictionUsed()
public void setMarkovBlanketRestrictionUsed(boolean markovBlanket)
public boolean isMarkovBlanketRestrictionEnabled()
public void setMarkovBlanketRestrictionEnabled(boolean markovBlanketEnabled)
public boolean isMarkovBlanketRestrictionBlocked()
public void setMarkovBlanketRestrictionBlocked(boolean markovBlanketBlocked)
public int getMarkovBlanketRestrictionTestCount()
public void setMarkovBlanketRestrictionTestCount(int testCount)
public double getMarkovBlanketRestrictionFrequencyThreshold()
public void setMarkovBlanketRestrictionFrequencyThreshold(double frequencyThreshold)
public boolean isMarkovBlanketRestrictionFixedSeed()
public void setMarkovBlanketRestrictionFixedSeed(boolean fixedSeed)
public long getMarkovBlanketRestrictionSeed()
public void setMarkovBlanketRestrictionSeed(long seed)
public java.lang.String getTargetNodeName()
LearningSettings
public void setTargetNodeName(java.lang.String target)
public boolean isSupervised()
LearningSettings
APIUtils.LEARNING_ALGORITHM.isSupervised()
public java.lang.String toString()
toString
in interface LearningSettings
toString
in class AbstractLearningSettings
public boolean isValid()
LearningSettings